economic order quantity EOQ - оптимальный размер заказа [партии] 
= best order quantity, economic ordering quantity, optimal lot size 
See: economic order quantity model, economic production run size 
Recall that managers face conflicting pressures to keep inventories low enough to avoid excess inventory holding costs but high enough to reduce ordering and setup costs. A good starting point for balancing these conflicting pressures and determining the best cycle-inventory level for an item is finding the economic order quantity (EOQ), which is the lot size that minimizes total annual cycle-inventory holding and ordering costs. The approach to determining the EOQ is based on the following assumptions:

The demand rate for the item is constant (for example, always 10 units per day) and known with certainty.

No constraints are placed (such as truck capacity or materials handling limitations) on the size of each lot.

The only two relevant costs are the inventory holding cost and the fixed cost per lot for ordering or setup.

Decisions for one item can be made independently of decisions for other items. In other words, no advantage is gained in combining several orders going to the same supplier.

The lead time is constant (e.g., always 14 days) and known with certainty. The amount received is exactly what was ordered and it arrives all at once rather than piecemeal.

The economic order quantity will be optimal when all five assumptions are satisfied. In reality, few situations are so simple. Nonetheless, the EOQ is often a reasonable approxima​tion of the appropriate lot size, even when several of the assumptions do not quite apply. Here are some guidelines on when to use or modify the EOQ.

    Don't use the EOQ

- If you use the "make-to-order" strategy and your customer specifies the entire order be delivered in one shipment

- If the order size is constrained by capacity limitations such as the size of the firm's ovens, amount of testing equipment, or number of delivery trucks

    Modify the EOQ

-
If significant quantity discounts are given for ordering larger lots

-
If replenishment of the inventory is not instantaneous, which can happen if the items
must be used or sold as soon as they are finished without waiting until the entire lot
has been completed (see Supplement D, "Special Inventory Models," for several use​
ful modifications to the EOQ)

   Use the EOQ

-
If you follow a "make-to-stock" strategy and the item has relatively stable demand.

-
If your carrying costs and setup or ordering costs are known and relatively stable
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The EOQ was never intended to be an optimizing tool. Nonetheless, if you need to determine a reasonable lot size, it can be helpful in many situations.

We begin by formulating the total cost for any lot size Q. 
Next, we derive the EOQ which is the Q that minimizes total annual cycle-inventory cost. 
Finally, we describe how to convert the EOQ into a companion measure, the elapsed time between orders.

When the EOQ assumptions are satisfied, cycle inventory behaves as shown in Figure 12 .3. 
A cycle begins with Q units held in inventory, which happens when a new order is received. 
During the cycle, on-hand inventory is used at a constant rate and, because demand is known with certainty 
and the lead time is a constant, a new lot can be ordered so that inventory falls to 0 precisely 
when the new lot is received. 
Because inventory varies uniformly between Q and 0 the average cycle inventory equals half the lot size, Q.

The annual holding cost for this amount of inventory which increases linearly with Q as Figure 12.4(a) shows, is
Annual holding cost = (Average cycle inventory) (Unit holding cost) 
The annual ordering cost is

Annual ordering cost = (Number of orders/ Year) (Ordering or setup cost)

The average number of orders per year equals annual demand divided by Q. 
For example if 1,200 units must be ordered each year and the average lot size is 100 units, 
then 12 orders will be placed during the year. 
The annual ordering or setup cost decreases nonlinearly as Q increases, 
as shown in Figure 12.4(b), because fewer orders are placed
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The total annual cycle-inventory cost (expressing the total cost on an annual basis usually is convenient 
(although not necessary). Anytime horizon can be selected, as long as D and H cover the same time period. 
If the total cost is calculated on a monthly basis, 
D must be monthly demand and H must be the cost of holding a unit for 1 month), as graphed in Figure 12.4(c), 
is the sum of the two cost components:
Total cost = Annual holding cost + Annual ordering or setup cost
The number of orders actually placed in any year is always a whole number, although the formula allows the use of fractional values. However, rounding is not needed because what is being calculated is an average for multiple years. Such averages often are nonintegers.
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where
C = total annual cycle-inventory cost
Q = lot size, in units
H = cost of holding one unit in inventory for a year, often expressed as a percentage of the item's value 
D = annual demand, in units per year 
S = cost of ordering or setting up one lot, in dollars per lot
EXAMPLE   12.2 


Costing Out a lot-Sizing Policy

A museum of natural history opened a gift shop two years ago. 
Managing inventories has become a problem. 

Low inventory turnover is squeezing profit margins and causing cash-flow problems.

One of the top-selling items in the container group at the museum's gift shop is a bird feeder. 

Sales are 18 units per week, and the supplier charges $60 per unit. 

The cost of placing an order with the supplier is $45. 

Annual holding cost is 25 percent of a feeder's value, and the museum operates 52 weeks per year. 

Management chose a 390-unit lot size so that new orders could be placed less frequently. 

What is the annual cycle-inventory cost of the current pol​icy of using a 390-unit lot size? 

Would a lot size of 468 be better?

We begin by computing the annual demand and holding cost as

D = (18 units/week)(52 weeks/year) = 936 units 

H = 0.25($60/unit) = $15

The total annual cycle-inventory cost for the current policy is
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The total annual cycle-inventory cost for the alternative lot size is
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Decision Point 

The lot size of 468 units, which is a half-year supply, would be a more expensive option than the current policy. The savings in order costs are more than offset by the increase in holding costs. 

Management should use the total annual cycle-inventory cost function to explore other lot-size alternatives.

Figure 12.5 displays the impact of using several Q values for the bird feeder in Ex​ample 12.2. Eight different lot sizes were evaluated in addition to the current one. 
Both holding and ordering costs were plotted, 
but their sum — the total annual cycle-inventory cost curve — is the important feature.
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The graph shows that the best lot size, or EOQ, is the lowest point on the total annual cost curve, or between 50 and 100 units. Obviously, reducing the current lot-size policy (Q = 390) can result in significant savings. A more efficient approach is to use the EOQ formula:
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We use calculus to obtain the EOQ formula from the total annual cycle-inventory cost func​tion. We take the first derivative of the total annual cycle-inventory cost function with respect to Q, set it equal to 0, and solve for Q. As Figure 12.5 indicates, the EOQ is the order quantity for which annual holding cost equals annual ordering cost. Using this insight, we can also obtain the EOQ formula by equating the formulas for annual ordering cost and annual holding cost and solving for Q. The graph in Figure 12.5 also reveals that when the annual holding cost for any Q exceeds the annual ordering cost, as with the 390-unit order, we can immediately conclude that Q is too big. A smaller Q reduces holding cost and in​creases ordering cost, bringing them into balance. Similarly, if the annual ordering cost exceeds the annual holding cost, Q should be increased.

Sometimes, inventory policies are based on the time between replenishment orders, rather than on the number of units in the lot size. The time between orders (TBO) for a par​ticular lot size is the average elapsed time between receiving (or placing) replenishment orders of Q units. Expressed as a fraction of a year, the TBO is simply Q divided by annual demand. When we use the EOQ and express time in terms of months, the TBO is
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In Example 12.3, we show how to calculate TBO for years, months, weeks, and days.

Finding the EOQ, Total Cost, and TBO

For the bird feeders in Example 12.2, calculate the EOQ and its total annual cycle-inventory cost. 

How frequently will orders be placed if the EOQ is used?

Using the formulas for EOQ and annual cost, we get
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Figure 12.6 shows that the total annual cost is much less than the $3,033 cost 

of the current policy of placing 390-unit orders.
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When the EOQ is used, the time between orders (TBO) can be expressed in various ways for the same time period.
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Decision Point Using the EOQ, about 12 orders per year will be required. 
Using the current policy of 390 units per order, an average of 2.4 orders will be needed each year 

(every five months). 

The current policy saves on order​ing costs but incurs a much larger cost for carrying the cycle inventory. Although it is easy to see which option is best on the basis of total ordering and holding costs, other factors may affect the final decision. 

For example, if the sup​plier would reduce the price per unit for large orders, 

it may be better to order the larger quantity.

Subjecting the EOQ formula to sensitivity analysis can yield valuable insights into the man​agement of inventories. Sensitivity analysis is a technique for systematically changing cru​cial parameters 
to determine the effects of a change. Let us consider the effects on the EOQ 

when we substitute different values into the numerator or denominator of the formula.

Because D is in the numerator, the EOQ (and, therefore, the best cycle-inventory level) 
increases in proportion to the square root of the annual demand. 

Therefore, when demand rises, the lot size also should rise, but more slowly than actual demand.

Because S is in the numerator, increasing S increases the EOQ and, consequently, the average cycle inventory. Conversely, reducing S reduces the EOQ, allowing smaller lot sizes to be produced economically. This relationship explains why manufacturers are so concerned about reducing setup time and costs. When weeks of supply decline, inventory turns increase. 

When setup cost and setup time become trivial, a major impediment to small-lot production is removed. Because H is in the denominator, the EOQ declines when H increases. 

Conversely, when H declines, the EOQ increases. Larger lot sizes are justi​fied by lower holding costs. Total cost is fairly insensitive to errors, even when the estimates are wrong by a large margin. The reasons are that errors tend to cancel each other out and that the square root reduces the effect of the error. Suppose that we incorrectly esti​mate the holding cost to be double its true value; that is, we calculate EOQ using 2H, instead of H. For Example 12.3, this 100 percent error increases total cycle-inventory cost by only 6 percent, from $1,124 to $1,192. 

Thus, the EOQ lies in a fairly large zone of acceptable lot sizes, allowing managers to deviate somewhat from the EOQ to accommodate supplier contracts or storage constraints.

On the surface it may seem that the EOQ is diametrically opposed to the principles of lean systems, which rely on small lot sizes and low inventory levels. However, the same process improvements that lead to a lean system create an environment that approaches the rather restrictive assumptions of the EOQ: For example, yearly, monthly, daily, or hourly demand rates are known with reasonable certainty in lean systems, and the rate of demand is rela​tively uniform. Lean systems can also have few process constraints if the firm practices constraint management. 
In addition, lean systems strive for constant delivery lead times and dependable delivery quantities from suppliers, both of which are assumptions of the EOQ. 

Consequently, the EOQ as a lot sizing tool is quite compatible with the principles of lean systems.

The EOQ and other lot-sizing methods answer the important question: 
How much should we order? 

Another important question that needs an answer is: 

When should we place the order? 

An inventory control system responds to both questions. 

In selecting an inventory control system for a particular application, the nature of the demands imposed on the inventory items is crucial. An important distinction between types of inventory is whether an item is subject to dependent or independent demand. Retailers, such as JCPenney, and distributors must manage independent demand items—that is, items for which demand is influenced by market conditions and is not related to the inventory decisions for any other item held in stock. Independent demand inventory includes

- Wholesale and retail merchandise

- Service support inventory, such as stamps and mailing labels for post offices, office sup​plies for law firms, and laboratory supplies for research universities

- Product and replacement-part distribution inventories

- Maintenance, repair, and operating (MRO) supplies—that is, items that do not become part of the final service or product, such as employee uniforms, fuel, paint, and machine repair parts

Managing independent demand inventory can be tricky because demand is influenced by external factors. For example, the owner of a bookstore may not be sure how many copies of the latest best-seller novel customers will purchase during the coming month. As a result, the manager may decide to stock extra copies as a safeguard. Independent demand, such as the demand for various book titles, must be forecasted.

In this chapter, we focus on inventory control systems for independent demand items, which is the type of demand the bookstore owner, other retailers, service providers, and dis​tributors face. Even though demand from any one customer is difficult to predict, low demand from some customers often is offset by high demand from others. Thus, total demand for any independent demand item may follow a relatively smooth pattern, with some random fluctuations. Dependent demand items are those required as components or inputs to a service or product. Dependent demand exhibits a pattern very different from that of independent demand and must be managed with different techniques (Chapter 15, "Resource Planning"). In this section, we compare two inventory control systems: the continu​ous review system, Q system, and the periodic review system, P system. 
